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Predicting Hertzian fracture

A. C. FISCHER-CRIPPS

Department of Applied Physics, University of Sydney, NSW 2006, Australia

The procedure for calculating the probability of initiation of a Hertzian cone crack as

a function of indenter load and indenter radius is demonstrated and the results compared
with experimental data. Such a procedure brings together the energy balance and flaw
statistical explanations of Auerbach’s law. The method relies on the application of Weibull
statistics in the diminishing indentation stress field. It is shown how strength parameters
obtained from bending tests on bulk specimens may be used within the analysis for
predicting the presence of surface flaws which lead to the initiation of a cone crack. The
procedure is shown to apply to both cylindrical punch and spherical indenters.

1. Introduction

Indentation fractures in glass were first studied in
detail by Hertz [1, 2] in 1881. Hertz found that a cone
crack of characteristic appearance occurred in a flat
specimen of glass which was loaded by a hard, spheri-
cal indenter. In 1891, Auerbach [3] noted that a cone
crack appears when the force reaches a critical value
which is directly proportional to the radius of the
indenter, a relationship often referred to as “Auer-
bach’s law”. Early analyses appeared to indicate that
Auerbach’s law contradicts the Griffith energy balance
criterion for crack growth. Attempts to explain Auer-
bach’s law in terms of the statistical spread of surface
flaw sizes [4] were largely unsuccessful. In 1967,
Frank and Lawn [5] proposed an energy balance
analysis, independent of the surface flaw statistics,
which was extensively revised in 1984 by Mouginot
and Maugis [6]. In 1994, Fischer-Cripps and Collins
[7] showed that the probability of initiation of
a Hertzian cone crack in a specimen with a given
surface flaw distribution could only be determined by
a consideration of both the energy balance analysis
and the surface flaw statistics. Fischer-Cripps and
Collins gave particular attention to the case of cylin-
drical flat punch indenters using an indentation stress
field obtained from a finite element analysis. The pre-
sent work is concerned with a demonstration of the
procedure given by these workers and its application
to the case of both spherical and cylindrical flat punch
indenters using analytically derived indentation stress
fields.

2. The indentation stress field

Hertz observed that for spherical indenters, cone
cracks always started near the edge of the contact
circle where the tensile stresses were the greatest and
formulated mathematical relationships between in-
denter load P, the indenter radius R, contact area a

4kPR
3 E

3

(1a)

0022-2461 © 1997 Chapman & Hall

where k is an elastic mismatch constant
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In these equations, E and E’ is Young’s modulus,
and v and V' is Poisson’s ratio of the specimen and
the indenter respectively. Fig. 1 shows the geometry
of the contact for both spherical and cylindrical
indenters.

Hertz did not calculate the magnitudes of the
stresses at general points within the specimen but
offered a suggestion as to their character by interpola-
ting between those he calculated on the surface and
along the axis of symmetry. The indentation stress
field for the case of a spherical indenter appears to
have been first calculated in detail by Huber [8] in
1904 and again later by Fuchs [9] in 1913, Huber and
Fuchs [10], 1914, and Moreton and Close [11] in
1922. More recently, the integral transform method of
Sneddon [12] has been applied to axis-symmetric
distributions of normal pressures which correspond to
a variety of indenters [13]. An extensive mathema-
tical treatment is given by Gladwell [14], and an acces-
sible text directed to practical applications is given by
Johnson [15]. In the present work, we require the
indentation stress field for spherical and cylindrical
flat punch indenters and we refer directly to literature
sources.

For the case of a spherical indenter, the distribution
of stress within the specimen, in cylindrical coordi-
nates, is given by [8, 16]
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Figure 1 Geometry of indentation fracture with (a) spherical and
(b) cylindrical flat punch indenters.
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In Equation 2, p,, = P/mna? is the mean contact pres-
sure, with P equal to the indenter load, and a is the
radius of the circle of contact. The principal stresses, in
the rz plane are given by
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and the angle between the direction of o; and the
surface of the specimen is found from

dz G,— G G, — G, \? 172
z __5 =6, |(5=0C: 1
dr 2T, [< 27T, ) + } (30)

where + is the sign of t,, [13].

On the surface (at z = 0 and all values of r/a), and
also beneath the indenter along the z axis at r = 0, o,,
Gy, O, are principal stresses. The hoop stress, oy, is
always a principal stress because of symmetry. On the
surface of the specimen, beneath the indenter (r < a),
all three principal stresses are compressive and all
have approximately the same magnitude. Outside the
contact circle but still on the surface, the first principal
stress o; = o, is tensile with a maximum value at the
edge of the contact circle. This stress is usually respon-
sible for the formation of Hertzian cone cracks. The
second principal stress, 6, = G, is a hoop stress and is
compressive in this region. Outside the contact arca
along the surface, 6, = — o, and beneath the surface
along the axis of symmetry at r = 0, the two principal
stresses are equal, 6, = 6;. The magnitude of 3 at
the surface is zero outside the contact circle since it
acts normal to a free surface in this region. Along the
surface, at all values of r/a, 6; = o, and acts in a radial
direction. G, is of course a hoop stress, and o5 acts
normal to the surface. It is convenient to label the
stresses such that o, > o, > o3 nearly always.

Fig. 2a—c shows contours of equal values of stress
calculated using the Equations 2 and 3. Note that the
contours shown in Fig. 2a—c give no information
about the direction or line of action of these stresses.
Such information is only available by examining stress
trajectories. Stress trajectories are curves whose
tangents show the direction of one of the principal
stresses at the point of tangency and are particularly
useful in visualizing the directions in which the princi-
pal stresses act. The stress trajectories of o,, being
a hoop stress, are circles around the z axis. Stress
trajectories for oy and o3 can be determined from
Equation 3b and are shown in Fig. 2d.

The important feature of the indentation stress field
for the initiation of a conical fracture in brittle mate-
rials is the tensile region in the specimen surface just
outside the area of contact. Hertzian cone cracks tend
to follow a direction of orthogonality with the greatest
value of tensile stress, i.e. ;. Thus, it is not surprising
to observe that cone cracks, as they travel downward
into the specimen, appear to follow the o3 stress
trajectory which itself is orthogonal to the o, trajectory.
As demonstrated by Frank and Lawn [5], it is this
feature of the geometry of the cone cracks that allows
us to determine the strain energy release rate along the
path of the o3 stress trajectory.

As for the case of a sphere, the stress distribution
within the specimen loaded by a cylindrical punch is
given in cylindrical coordinates, with stresses expressed
in terms of the mean contact pressure and spatial coordi-
nates normalized to the contact radius a, as follows

O _ —I[J(f _Zp—a—2miss -|—ZJ}}
Pm 2 a r r

(4a)



0 1 2 3 4
0 PP L
T{: —
1 | o | 00—
0 P
',/”5?0 y ° Q"%«
1 _//,Q(;-Q'LVJ \
' “fgg"
A - o®
N
_2 Q'\Q
| S 2
-3
-4
(a) r/a
0 1 2 3 4
0020
Some—  —
~0.006——__ | —]
~0.004
D —
000
N
~
N
i ~
]
-4
(b) rla

0
-1
<
N
-2
-3
/
0\00 ,591\% g
4 | /]
(c) r/a
0 1 2 3 4
0 I N | 1

z/a

-4

(d) r/a

Figure 2 Stress trajectories and contours of equal stress for spherical indenter calculated for Poisson’s ratio v = 0.26. Distances r and
z normalized to the contact radius a and stresses expressed in terms of the mean contact pressure p,,. (a) o4, (b) o5, (c) 03, (d) o, and o3
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Note that the factor R in Equation 4e is equivalent to
u in Equation 2e. Principal stresses and maximum
shear stresses can be found by substituting Equations
4a to 4d into Equation 3a, where appropriate. Stress
contours and trajectories for the case of a cylindrical
punch indenter are shown in Fig. 3.

3. Fracture mechanics in the indentation
stress field

The well-known Griffith [17] criterion for fracture

relates the energy needed to form new crack surfaces

and the attendant release in strain energy. The

externally applied uniform stress o, required for

the growth of an existing flaw of length 2¢ and unit

width is
2vE 1/2
2| — = 5
O [(1 - vz)nc] ©)
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Figure 3 Stress trajectories and contours of equal stress for cylindrical flat punch indenter calculated for Poisson’s ratio v = 0.26. Distances
rand z normalized to the contact radius a and stresses expressed in terms of the mean contact pressure p,,. (a) o4, (b) 6,,(c) o3,(d) o, and

o3 trajectories.

where 7y is the fracture surface energy in Jm™2. The
1 — v? term is included for the general case of plane
strain. Equation 5 applies directly to a double-ended
crack of length 2¢ contained fully within a uniformly
stressed solid where the stress is applied normal to the
crack. It may also be applied with only a small error to
a half crack of length ¢, such as may be found on the
surface of a solid.

The Griffith criterion is more commonly stated in
terms of Irwin’s stress intensity factor [18] K; where

K31 —v?)

=
3 =2y (©)

where, for the case of an infinite solid
K; = o(nc)'? (7

The left-hand side of Equation 6 is termed the strain
energy release rate and is given the symbol G. The
Griffith criterion is satisfied for K; > K, where
K¢ may be considered a material property which can
be readily measured in the laboratory. A typical value
for soda-lime glass is 0.78 MPa m?/2. Using this value,
Equations 6 and 7 give a fracture surface energy for
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soda-lime glass of y = 3.6 Jm~2, which is in agree-

ment with various experimentally determined values
of this quantity [19].

For the case of a crack in a non-uniform stress field,
Frank and Lawn [5] showed that the stress intensity
factor may be calculated using the prior stress field
along the proposed crack path using

2 (¢ o(b)
K, = WLcl/zmdb (8)

where c is the length of the crack and b is the length of
travel along the crack path. Frank and Lawn deter-
mined the stress intensity factor for a crack path which
started at the radius of the circle of contact and fol-
lowed the o5 stress trajectory down into the interior of
the specimen. Mouginot and Maugis [6] applied
Equation 8 for potential crack paths for a range of
starting radii in the vicinity of the indenter. Their
work showed that Auerbach’s law is a consequence of
the peculiar nature of the diminishing stress field
which, together with the radius of the indenter, in-
fluences the starting radius of the cone crack and
hence its subsequent progress through the bulk of the



specimen. They argued that for a high density of flaws
of uniform size, the cone crack is initiated at the radius
for which the strain energy release rate is greatest.

Equation 8 may be re-written with stresses in terms
of the mean contact pressure p, and distances
expressed with respect to the contact radius a such
that

o (b/a)
Pm

f(bja) =

©)

Combining Equations 8 and 9 and including a factor
/1. which accounts for the expanding crack front we
may define a function ¢(c/a), related to K, as

cla 2 2\ —1/2 2
d(c/a) = a“ "”(2—@) f(b/a)d(b/a)J

o Fe\dad a
(10)

where 2nr, represents the length of the crack front at the
tip of the cone crack, and 2mtr, is the crack length at the
point defined by the variable b at which o (b) applies.

Since p,, = P/na?, Equation 10, together with Equa-
tion 1, allows the Griffith criterion at the critical
fracture condition for the case of the sphere to be
expressed as

3(1 — v2)P

g ¢ (1)

and for either the sphere or punch in terms of a

4(1 — v?)P?

G =2 = n3Ea®

¢(c/a)  (11b)
The function ¢(c/a) contains an integral which is char-
acteristic of the pre-existing stress field. The function
d(c/a) must be evaluated for a particular starting
radius, ro/a, since this determines the values of the
stress along the crack path.

Rearranging Equation 11b gives the critical load for
fracture, for either the sphere or the punch

B a3 1/2 TE3E2,Y >1/2 12
P = <¢<c/a>> <4(1—v2> (12

where it is noted that the factors in the second term on
the far right-hand side of Equation 12 are all material
constants. For both the sphere and the punch, there is
a range of values of stress level, indenter radius and
flaw sizes for which ¢(c/a) is nearly constant and leads
to Auerbach’s law.

Fig. 4 shows values for o, along the path of the 53
stress trajectory for different starting radii for both
spherical and flat punch indenters and demonstrates
the diminishing stress field along the prospective crack
paths. The integral in Equation 10 may be evaluated
numerically for the stress distribution along each o
stress trajectory and plotted as a function of c¢/a as
shown in Fig. 5. The value of ¢(c/a) for any particular
normalized radius rq/a is proportional to the strain
energy release rate for a crack of size ¢/a which com-
mences at that radius ro/a. For any flaw size ¢, there is
a particular radius, ry, for which the strain energy
release rate is greatest. This corresponds to the upper
envelope of the curves of ¢(c/a) in Fig. 5. This upper
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Figure 4 Normalized radial stress o,;/P,, plotted as a function of
normalized distance c/a along the o5 stress trajectory for different
starting radii, ro/a for (a) spherical indenter and (b) cylindrical
flat punch indenter. Stresses and trajectories calculated for
v =0.26.

envelope, not drawn in these figures, is denoted as
®(c¢/a). When the indenter load is steadily increased,
the Griffith criterion will be first met when the strain
energy release rate, given by Equations 11a and 11b
with the envelope of the curves, d(c;/a), becomes equal
to twice the fracture surface energy. A cone crack will
initiate at the lowest load for which a flaw of size ¢¢/a
exists in the specimen at a radius for which ¢ (c¢/a) is
greater than the critical value.

For flaws within the Auerbach range of flaw sizes,
the minimum critical load is given the symbol P, and
is found from

k2ym?
S Ere A
for the sphere and
En3y 1/2
i) o
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Figure 5 Strain energy release function ¢(c/a) as a function of
normalized crack length, c/a, for different starting radii, ro/a for
(a) spherical indenter and (b) cylindrical flat punch indenter. The
Auerbach range where the outer envelope of ¢(c/a) is approxi-
mately constant, is indicated in each figure along with the estimated
value of ¢,.

for the punch where the term in the square brackets in
Equation 13a, is the Auerbach constant. In Equations
13a and 13b, ¢, is the value of ¢(c/a) at the plateau.
From Fig. 5, this is estimated to be at ¢(c/a) = 0.0011
for the case of the sphere and ¢(c/a) = 0.0007 for the
punch. The value of ¢, is important since it influences
the fracture surface energy which is estimated from
data obtained from experiments. Combining Equa-
tions 11 and 13, it may be shown that

G [ P\b(c/a)

5 - (7)% ()
for the sphere and

G [P\ d(c/a)

5 - (7) % 4

for the case of the punch.

The term “fracture” in the present context signifies
the extension of a flaw to a circular ring crack concen-
tric with the contact radius. Once a flaw has become
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a propagating crack, it extends according to the strain
energy release function curve (Fig. 5) appropriate to its
starting radius. The development of this starting flaw
into a ring crack precludes the extension of other flaws
in the vicinity, even though the value of ¢(c/a) for
those flaws at some applied load above the flaw initia-
tion load may be larger than that calculated for the
starting flaw as it follows its ¢(c/a) curve. This is
because the conditions which determine crack growth
depend on the prior stress field. The function ¢(c/a)
can be used to describe the initiation of crack growth
for all flaws which exist in the prior stress field but can
only be considered applicable for the subsequent elon-
gation for that flaw which actually first extends.

4. Calculating the probability

of Hertzian fracture
Both the size and distribution of surface flaws charac-
terize the strength of brittle solids and the probability
of failure of a specimen of surface area A subjected to
a uniform tensile stress o can be calculated using
Weibull statistics [20]

P = 1 —exp(—kAc™) (15)

where m and k are the Weibull parameters. The para-
meter m describes the spread in strengths (a large
value indicating a narrow range) and the parameter
k is associated with the “reference strength” and the
surface flaw density of the specimen. In the present
work, weusem = 7.3and k = 5.1x 107" m~2Pa~ "3
as determined by Brown [21] for as-received soda-
lime glass.

The probability of failure given by Equation 15 is
equal to the probability of finding a flaw within an
area A of the specimen surface which is larger than the
critical flaw size (as given by the Griffith criterion) for
a uniform stress . The critical flaw size is given by
Equation 7 with K; = K.

We are now in a position to calculate the probabi-
lity of fracture for a given load and radius of indenter.
Let P, be the minimum critical load for values of c¢/a
within the Auerbach range. As noted above, the value
of ¢, corresponding to P, can be estimated by inspec-
tion of Fig. 5. The normalized strain energy release
rate G/2y may be determined from Equations 11a and
11b or Equations 14a and 14b. The Griffith criterion is
met when G/2y > 1. If the load P is less than the
minimum critical load P,, failure will not occur from
any flaws, no matter how large, since the Griffith
criterion is never met. Fracture from flaws of size
below, including, and beyond the Auerbach range can
only occur if the load is greater than P,.

At a load P greater than P,, the Griffith criterion is
met for various ranges of flaw sizes which depend on
the particular values of starting radii. Fracture will
occur from a flaw located at a particular starting
radius if that flaw is within the range for which
G/2y = 1 for that radius. This range of flaw sizes can
be determined fom Fig. 5 and is given by the c¢/a axis
coordinates for the upper and lower bounds of the
region where ¢(c/a) is such that G/2y > 1 for the
curve which corresponds to the radius r, under



consideration. The problem has been reduced to that
from calculating the probability of indentation frac-
ture occurring at a particular radius and load to the
probability of finding at least one flaw within a specific
size range at that radius. For the case of a punch, the
procedure is straight forward since the radius of circle
of contact, q, is a constant. For a sphere, the contact
radius depends upon the load and the procedure for
determining the required flaw sizes is slightly more
complicated.

To determine these probabilities, it is convenient to
divide the area surrounding the indenter into n annu-
lar regions of radii r; (i =1 to n). To determine the
probability of finding a flaw which meets the Griffith
criterion within each annular region, Equation 15 may
be used. Equation 15 gives the probability of failure
for an applied uniform stress, but also can be used to
calculate the probability of finding a flaw of size
greater than or equal to the critical value for that
stress, as given by Equation 7, within an area A of the
surface of the solid. The strength parameters, m and k,
for Equation 15 are those which are appropriate to the
specimen surface condition. The probabilities calcu-
lated for each annular region can be suitably combined
to yield a total probability of failure for a particular
indenter load and radius for a given surface flaw
distribution.

Let us first consider the case of a flat punch of
radius a. Consider an annular region of the specimen
surface with radius r; and area 6A4;. The load applied
to the indenter is set to some desired value of P/P,.
The range of values of flaw size which satisfies the
Griffith criterion may be determined for this region by
considering the appropriate line for ¢(c/a) in Fig. 5.
That is, G/2y is calculated for a range of c¢/a using
Equation 14b and the range of ¢/a, and hence ¢, for
which G/2y > 1 is identified. Let the range of flaw sizes
of interest be denoted by ¢; < ¢ < ¢,. We therefore
require the probability of finding such a flaw within
this size range in the area 6A. This is equal to the
difference between the probability of finding a flaw of
size ¢ > ¢, and the probability of finding a flaw of size
¢ > c¢,. However, the probability of finding a flaw
of size greater than a specific size, say c;, within the
area 04; is equal to the Weibull probability of failure
under the corresponding critical stress as given by
Equation 7.

For a given radius of indenter, the probability of
finding a flaw of size greater than ¢, within the annu-
lar region of radius r; and width &r;, which has an areca
0A; = 2mr;or;, 18

Kic "
Pi(C>C1) = 1—exp{—k2ﬂ:ri5ri|:(1w1)l/2:| }
(16)

with a similar expression for P;(c > ¢,). The probabi-
lity of finding a flaw of size in the range ¢; < ¢ < ¢,
within area 84, is the difference in probabilities and is
equal to the probability of failure from a flaw of size
within that range

Pi(ci <c<cy) = Pile>cy)—Pile>cy) (17)

The values c¢; and ¢, may be determined for all annu-
lar regions, i.e. values of ry/a, by repeating the above
procedure. The probability of fracture not occurring
from a flaw within the region 84 is found from

P, = 1-"p, (18)

The probability of survival for the entire region of
n annular elements surrounding the indenter is thus
given by

Ps=P, PP, ..P,..P, (19)

Therefore finally, the probability of failure Pg for the
entire region, at the load P/P,, is then given by

Pr=1—P; (20)

This calculation may be repeated for different values
of P/P, to obtain the probability of failure as a func-
tion of indenter load for a particular value of indenter
radius.

For the case of a sphere, the situation is complicated
by the expanding radius of circle of contact with
increasing load. Combining Equations 1 and 13a, it is
easy to show that the radius of circle of contact for
a given radius of indenter and ratio P/P, may be
calculated from

, 8k* ym* P

CToEi—ve RS .

thus permitting values for ¢; to be determined as
a function of P/P, for a constant R and proceeding as
for the case of the punch.

Fig. 6 shows the probability of failure as a function
of indenter load for a particular size of indenter for
both spherical and cylindrical punch indenters for
as-received glass. Calculated values are shown along
with those determined from indentation experiments
[7]. Agreement is fairly good especially when one
considers that the Weibull parameters used in the
calculations were determined on glass specimens from
a completely different source to those used in the
experimental work presented here. The curves in Fig. 6
rely on an estimation of the fracture surface energy y
in Equations 13a and 13b. Although the fracture sur-
face energy may in principle be determined from
indentation tests, such estimations are inaccurate due
to the inevitable presence of friction between the
indenter and the specimen. Fischer-Cripps and Collins
[7] included an adjustment factor p = 2.5 in their
analysis to account in a simple manner for the effect of
friction. The calculated curves in Fig. 6 have been
obtained from Equations 13a and 13b with fracture
surface energies determined from the experimental
data (see below) which correspond to f =~ 2.

5. Fracture surface energy and

the Auerbach constant
The procedure given in previous sections for calculat-
ing the probability of initiation of a Hertzian cone
crack relies upon an estimation of the fracture surface
energy of the specimen material. Experimental work
reported by Fischer-Cripps and Collins [7] indicates
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Figure 6 Probablity of failure versus indenter load for as-received
soda-lime glass for (a) spherical indenter R = 4 mm and (b) cylin-
drical flat punch indenter a = 0.4 mm. Solid line indicates cal-
culated values with surface energy y as given in Table I and (@)
indicates experimental results with lubricated contacts.

a fracture surface energy nearly 2.5 times that deter-
mined by other means [19], causing those workers to
postulate that the inevitable presence of friction be-
neath the indenter leads to an increase in the apparent
surface energy estimated from indentation experi-
ments, even with lubricated contacts. Estimations of
fracture surface energy are best undertaken with
respect to the minimum critical load for failure.

As before, let P, denote the minimum critical load
for an indentation fracture to occur. We would expect
this minimum critical load to correspond to the frac-
ture load observed in experiments on glass with a high
density of flaws, i.e. on abraded glass. Equations 13a
and 13b predict a straight line relationship between
spherical indenter radius and the punch radius to the
3/2 power respectively and the minimum critical load.
This is expected since Equations 13a and 13b assume
a specimen surface containing flaws of all sizes and do
not give any information about the probability of
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Figure 7 Minimum critical load versus indenter radius for
(a) spherical and (b) cylindrical indenters for abraded soda-lime
glass with lubricated contacts. The horizontal axis in (b) is given as
the indenter radius raised to the 2/3 power. Solid line indicates
calculated values with surface energy y as given in Table I and (@)
indicates experimental results. In (b), the actual radius of the inden-
ter in mm is shown for each experimental result.

finding a particular sized flaw at a particular starting
radius. As the indenter size is increased, the flaw size
corresponding to the Auerbach range also increases
and it is from flaws within the Auerbach range that
failure first occurs — since the function ¢(c/a), as
shown in Fig. 5a and b, are a maximum in the Auer-
bach range of flaw sizes.

From Equation 13a, the Auerbach constant is given
by

k2ym? } (22a)

B [3(1 — V),
For the case of the punch, the Auerbach constant for

a sphere of radius R giving a contact circle of radius
a may be found from Equation 13b

4 - En3y 4k\  2kmdy
- [(1—V2)2¢j<ﬁ> (1= v)d,

(22b)



TABLE I Calculated fracture surface energy and Auerbach con-
stant for soda-lime glass from indentation tests with spherical and
cylindrical flat punch indenters

Sphere Punch
Fracture surface energy (Jm™?) 8.88 7.46
Auerbach constant (Nm ™ 1) 105233 138848

As can be seen from Equations 22a and 22b, the
Auerbach constant depends upon the value of fracture
surface energy v. Fig. 7 shows experimental data for
the minimum critical load obtained on abraded soda-
lime glass using both spherical and flat punch inden-
ters. The data for the punch has been plotted as
a function of a*? so as to give a linear relationship
with the minimum critical load, and the actual punch
diameter is indicated for each data point. The slope of
line of best fit through this data is then directly pro-
portional to the fracture surface energy. Values of
v estimated in this manner are given in Table I
together with the calculated Auerbach constants for
each type of indenter.

As can be seen, the fracture surface energies ob-
tained using this method for the two indenters are not
all that much different although they are appreciably
higher than the expected value of y =3.5Jm™2 for
this material. The difference, as postulated by
Fischer-Cripps and Collins [7], is probably due to
friction between the indenter and the specimen during
testing. Differences between the value obtained from
the experiments using the sphere and that with the
punch are due to the different dependence on friction
on the indentation response of the two types of inden-
ter. The solid lines in Fig. 7a and b have been cal-
culated using Equations 13a and 13b with the fracture
surface energies as shown in Table I for each type of
indenter.

Although the theory predicts that, within the Auer-
bach range there is a linear relationship between the
minimum critical load and the indenter radius, there is
no particular reason why this should be so for median
or mean fracture loads. Indeed, if a linear relationship
were to exist, it would be expected that the Auerbach
constants obtained from such data would be largely
determined by the flaw statistics of the sample, rather
than by intrinsic material properties.

6. Conclusions

The procedure for calculating the probability of initia-
tion of a Hertzian cone crack as a function of indenter
load and indenter radius has been demonstrated and
the results compared with experimental data. Such
a procedure brings together the energy balance and
flaw statistical explanations of Auerbach’s law. The
method relies on the application of Weibull statistics
in the diminishing indentation stress field. Strength
parameters obtained from bending tests on bulk speci-

mens may be used within the analysis for predicting
the presence of surface flaws which lead to the initia-
tion of a cone crack. The procedure given in the
present work has been shown to apply to both cylin-
drical punch and spherical indenters.
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